Algebra 2

1.2 - Properties of Real Numbers

objective: To graph a order real numbers. To identify properties of real numbers.
Know the following vocabulary. Complete the diagram that illustrates the relationships between the different number systems.

N Natural or Counting Numbers:
1,2,3
W Whole Numbers:
$0,1,2,3 \ldots$
Z Integers:

$$
\ldots-2,-1,0,1,2 \ldots
$$

Q Rational Numbers: $\frac{P}{Q} \rightarrow$ terminal $\frac{2}{3}$

Irrational Numbers:

Real Numbers:

All rational and irrational

PARTNERS

Classify in as many ways as possible:

56
N, W, Z, Q, \mathbb{R}
5.6
Q, \mathbb{R}
$5 . \overline{6}$
$Q \mathbb{R}$
5.616616661... I, \mathbb{R}

PARTNERS

Graph each number on a number line.

$$
\begin{array}{llll}
-1 & \sqrt{19} & 2.8 & -2 \frac{1}{2}
\end{array}
$$

Compare the two numbers. Use >or $<$.

$$
-\sqrt{2}>-2
$$

4 \qquad $\sqrt{17}$

$$
\sqrt{29} \geq 5
$$

$$
\sqrt{50}
$$

$$
6.8
$$

Properties of Real Numbers

For any real numbers a, b, and c

1. Commutative Property of

- Addition $\rightarrow a+b=b+a$
- Multiplication $\rightarrow a \cdot b=b \cdot a$

2. Associative Property of

- Addition $\rightarrow(a+b)+c=a+(b+c)$
- Multiplication $\rightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)$

Examples

$$
\begin{aligned}
& 3+4=4+3 \\
& 4 \cdot 3=3 \cdot 4
\end{aligned}
$$

$$
\begin{aligned}
& (3+4)+5=3+(4+5) \\
& (3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5)
\end{aligned}
$$

3. Identity - Think: "What add/mult to the number doesn't change the value"

- Addition $\rightarrow a+0=a$
- Multiplication $\rightarrow a \cdot 1=a$
"O" is identity for addition "I" is identity for multiplication

4. Inverse - Think: \qquad "How do I get to Identity?"

- Addition $\rightarrow a+(-a)=0$

$$
5+(-5)=0
$$

- Multiplication \rightarrow If $a \neq 0$, than $a \cdot\left(\frac{1}{a}\right)=1 \quad 5 \cdot\left(\frac{1}{5}\right)=1$

$$
-\frac{2}{3} \cdot\left(-\frac{3}{2}\right)=1
$$

5. Distributive Property $\rightarrow \frac{\text { If } a(b+c) \text { then }}{a b+a c}$ and $(a+c) b=a b+b c$

Identify the opposite or additive inverse, and the reciprocal or multiplicative inverse, for each number * PARTNERS *

7 Add inverse: -7
Mut inverse: $\frac{1}{7}$ $7^{-\frac{9}{2}}$ Add: 4.5 $\frac{3}{4}$ Add: $-\frac{3}{4}$

Must: $\frac{4}{3}$ $-\frac{6}{7}$ Add: $\frac{6}{7}$ Mult: $-\frac{2}{9}$ Mull: $-\frac{7}{6}$
PARTNERS
Name the property of real numbers illustrated by each equation.

$$
2(3+\sqrt{5})=2 \cdot 3+2 \cdot \sqrt{5}
$$

$$
16+(-13)=-13+16
$$

Distributive
Commutative Property of Addition
Using Real Properties to Simplify Expressions

1. Simplify $4(3 a-b)+2(b+3 a)$

* PARTNERS*

$$
\begin{aligned}
& 12 a-4 b+2 b+6 a \\
= & 18 a-2 b
\end{aligned}
$$

2. Simplify $2(3 x-y)-4(2 x+3 y)$

$$
\begin{aligned}
& 6 x-2 y-8 x-12 y \\
= & -2 x-14 y
\end{aligned}
$$

objective: To evaluate and to simplify algebraic expressions
MP: Reason abstractly and quantitatively
I. Verbal Expressions to Algebraic Expressions

A mathematical sentence containing one or more variables is called an \qquad sentence $3 x+4$

A mathematical sentence stating that two algebraic expressions are \qquad equal is called an \qquad eq equation $3 x+4=12$ Example: * PARTNERS*

1. Write an algebraic expression to represent
a. 7 less than the number $t=t-7$
b. the square of a number decreased by the product of 5 and the number $=x^{2}-5 x$

PARTNERS

2. Write an algebraic equation to represent
a. The sum of 2 and a number is $5=2+x=5$ or $x+2=5$
b. You have 50 boxes of donuts and are eating 12 boxes a month. $50=12 x$

* PARTNERS*

3. Evaluate each expression for the given values of the variables.
a. $-4 v+3(w+2 v)-5 w ; v=-2$ and $w=4$

$$
\begin{aligned}
& -4 v+3(w+2 v)-5 w ; v=-2 \text { and } w=4 \\
& -4(-2)+3((4)+2(-2))-5(4) \quad 8-20=-12 \\
& 8+3(4-4)-20
\end{aligned}
$$

b. $c(3-a)-c^{2} ; a=4$ and $c=-1$

$$
\begin{gathered}
(-1)(3-(4))-(-1)^{2} \\
-1(-1)-(1) \\
1-1=0
\end{gathered}
$$

4. Simplify by combining like terms
a. $5 x-3 x^{2}+16 x^{2}$
b. $\frac{3(a-b)}{9}+\frac{4}{9} b$

$$
\frac{3 a-3 b}{9}+\frac{4 b}{9}
$$

$$
3 a-3 b+4 b
$$

$$
\begin{aligned}
& \frac{3 a+b}{9} \\
& \frac{3 a}{9}+\frac{b}{9} \\
& \frac{9}{3}+\frac{b}{9}
\end{aligned}
$$

Section 1.4 - Solving Equations

objective: To solve equations and to solve problems by writing equations MP: reason abstractly and quantitatively
Verbal Expressions to Algebraic Expressions
Write an algebraic equation to represent
a. The sum of 2 and a number is $52+x=5$ or $x+2=5$
b. The difference of 2 and three times a number is $11 \quad \|=2-3 x$

Properties of Equality

- Reflexive \rightarrow For any real number $a, a=a$

Examples

$$
4=4
$$

- Symmetric \rightarrow For all real numbers a and b

$$
x=4 \text { or } 4=x
$$ If \qquad $a=b$, then $b=a$

- Transitive \rightarrow For all real numbers a, b, and c If $a=b$ and \qquad , then \qquad $a=c$

$$
x=y ; y=4 \text {, then } x=4
$$

- Substitution \rightarrow If $a=b$, then a may be replaced by b and b may be replaced by a.

$$
\begin{array}{ll}
\text { Example: } 2 a+4 b=3 b+6 ; a=2 & 2 a+4 a=3 a+6 \\
\text { ne the property illustrated by each statement } & 2(2)+4(2)=3(2)+6 \\
& 4+8=6+6
\end{array}
$$

1. $a-2.03=a-2.03$ Reflexive
2. If $3=x$ and $x=y$, then $3=y$ Transitive

More Properties of Equality

- Addition \rightarrow If $a=b$, then $a+c=b+c$

$$
\begin{gathered}
\text { Examples } \\
\text { if } x=12 \text {, then } x+3=12+3
\end{gathered}
$$

- Subtraction \rightarrow If $a=b$, then $a-c=b-c$

$$
\text { if } x=12 \text {, then } x-3=12-3
$$

- Multiplication \rightarrow If $a=b$, then $a \cdot c=b \cdot c$

$$
\text { if } x=12 \text {, then } x \cdot 3=12 \cdot 3
$$

- Division \rightarrow If $a=b$, then $a \div c=b \div c($ with $c \neq 0)$ if $x=12$, then $x \div 3=12 \div 3$

PARTNERS

Use the properties of you have learned so far to solve for unknown variables below
3. $s-5.48=0.02$
$+5.48+5.48$
$s=5.5$

$$
\begin{array}{cl}
4 \cdot \frac{3}{2} 18=\frac{2}{3} t \cdot \frac{3}{2} & \text { 5. } \\
53=3(y-2)-2(3 y-1) \\
53=3 y-6-6 y+2 \\
\frac{3}{2} \cdot \frac{18}{1}=\frac{2}{3} t \cdot \frac{3}{2} & 53=-3 y-4 \\
27=t & +4 \\
4 & \frac{57}{-3}=\frac{-3 y}{-3} \\
4 & -19=y
\end{array}
$$

Equations with No Solutions and Identities

Is the equation $11+3 x-7=6 x+5-3 x$ always, sometimes, or never true?

$$
\begin{aligned}
& 3 x+4= 3 x+5 \\
&-3 x \quad-3 x \\
& 4=5 \\
& \text { Never }
\end{aligned}
$$

Is the equation $6 x+5-2 x=4+4 x+1$ always, sometimes, or never true?

$$
\begin{gathered}
4 x+5=4 x+5 \\
-4 x \quad-4 x \\
5=5 \\
\text { Always }
\end{gathered}
$$

Solving a Literal Equation
The equation $C=\frac{5}{9}(F-32)$ relates temperatures in degrees Fahrenheit F and degrees Celsius C. What is F in terms of C ?

$$
\begin{aligned}
& \frac{9}{5} \cdot C=\frac{5}{9}(F-32) \cdot \frac{9}{5} \\
& \frac{9}{5} C=F-32 \\
& +32
\end{aligned}
$$

$$
F=\frac{9}{5} c+32
$$

* Properties of Inequalities
objective: To solve and graph Section 1.5-Solving Inequalities
MP: Make sense of problems + persevere in solving them.
For any two real numbers, a and b, exactly one of the following statements is true:

$a=b$
$a>b$

$$
\begin{array}{lll}
\text { Inequalities can be written the following ways: } & & \text { Solution-set } \\
<\text {-less than } & \leq \text {-less than or equal to } & \{x \mid \quad \text { notation } \\
>\text {-greate rthan } \geq \text { - greater than or equal to } & \{x \mid \text { ex: } x>4\{x \mid x>4\}
\end{array}
$$

Inequalities are solved using the same process as solving equations. Here are some additional tips:

1. Reverse the inequality when you solve like $3 x+4=7$

- Multiply or Divide by a negative

2. When do you use an open dot vs. a solid dot when graphing an inequality?

- open dot - symbols $<$ or $>\rightarrow$ "Don't include"
- Solid dot - Symbols \leq or $\geq \rightarrow$ "Include"

3. Which direction is the ray?

- The ray (shaded region) points in direction inequality points, if variable is on left side.
ex: $x>3$
Examples: *Partners*
Write the inequality that represents the sentence.

1. Four less than a number is greater than -28 . $n-4>-28$
2. Twice a number is at least 15 .

$$
2 n \geq 15
$$

3. A number increased by 7 is less than 5 . \square $n+7<5$
4. The quotient of a number and 8 is at most -6 .

$$
\frac{n}{8} \leq-6
$$

Solve each inequality. Graph the solution.

1. $2 w+19<5$
$-19-19$
$\frac{2 w}{2}<-\frac{14}{2}$
$w<-7$
2. $11 \cdot \frac{3 z+6}{11}<z \cdot 11$

$$
\begin{aligned}
3 z+6 & <11 z \\
-3 z & -3 z \\
\frac{6}{8} & <\frac{8 z}{8} \quad \frac{3}{4}<z \rightarrow z>\frac{3}{4}
\end{aligned}
$$

3. $2 y+9<5 y+15$

$-3 y+9<+15$
-9
$-9 y$
-3
-3

Using an Inequality

A movie rental company offers two subscription plans. You can pay $\$ 36$ a month and rent as many movies as desired, or you can pay $\$ 15$ a month and $\$ 1.50$ to rent each movie. How many movies must you rent in a month for the first plan to cost less than the second plan?

You must rent more
than 14 movies in a month for the first plan to cost less.

Let $n=$ the \# of movie rentals in one month

$$
\begin{aligned}
& \text { First plan: }=36 \\
& \text { Second plan: }=15+1.5 n \\
& 7
\end{aligned}
$$

* PARTNERS*

No Solution or All Real Numbers as Solutions

Is the inequality always, sometimes, or never true? $-2(3 x+1)>-6 x+7$

$$
\begin{aligned}
& -6 x-2>-6 x+7 \\
& +6 x \\
& +6 x \\
& \hline
\end{aligned}
$$

False - never
true
$-2>7$
Is the inequality always, sometimes, or never true? $5(2 x-3)-7 x \leq 3 x+8$

$$
\begin{array}{cl}
10 x-15-7 x \leq 3 x+8 & -15 \leq 8 \\
3 x-15 \leq 3 x+8 & \text { Always True }
\end{array}
$$

Compound Inequalities $h \geq 10$ and $h \leqslant 16$ A compound inequality consist of two inequalities joined by the word \qquad and or by the word \qquad To solve a compound inequality involving \qquad and , find the \qquad of the of the con in e inctionities. To solve a compound inequality involving \qquad or find
\qquad the \qquad union of \qquad Solution sets of the two inequalities. disjunctions

Solve in partners, graph together
And Inequalities - What is the solution of $7<2 x+1$ and $3 x \leq 18$? Graph the solution.

$$
\begin{aligned}
& 6<2 x \quad 3 \\
& 3<x \quad \text { and } x \leq 6
\end{aligned}
$$

$$
3<x \leq 6
$$

Or Inequalities - What is the solution of $7+k \geq 6$ or $8+k<3$? Graph the solution.

* Partners $* \quad ~ k \geq-1$ or $k<-5$

Examples: Solve the compound inequalities. Graph the solutions.

8. $x \geq-2$ and $x<3$

Answer:

Together
10. Solve $10 \leq 3 y-2<19$. Write your answer in set notation. Graph the solution set
9. $x \leq-2$ or $x>3$

$$
\begin{array}{lc}
10 \leq 3 y-2<19 \\
+2 & \frac{12}{3} \leq \frac{3 y}{3}<\frac{21}{3}
\end{array} \quad\left\{\begin{array}{l}
4 \leq y<7 \\
\hline y \mid 4 \leq y<7\}
\end{array}\right.
$$

11. Solve $|2 x-2| \geq 4$. Write your answer in set notation. Graph the solution set

$$
\begin{array}{ccc}
2 x-2 \geq 4 & \text { or } & -(2 x-2) \geq 4 \\
+2+2 & & -2 x+2 \geq 4 \\
\frac{2 x}{2} \geq \frac{6}{2} & & \frac{-2 x}{-2} \geq \frac{2}{-2} \\
x \geq 3 & \text { or } & x \leq-18
\end{array}
$$

Section 1.6 Solving Absolute Value Equations and Inequalities

objective: To write and solve equations and inequalities involving absolute value.
I. Solving Absolute Value Equations
***The absolute value of a number is its \qquad from \qquad on the number line Since distance is positive, then absolute value is \qquad
Symbolically: For any real number a, \qquad $a \mid=a$, if $a \geq 0$, and \qquad $|a|=-a$, if $a<0$

Graphically, $|3|$ is represented by

$|x|=3 \rightarrow x=3$ same as $|-3|$
Note:
The solution set for an equation that has no solution is the empty set symbolized by $\{$ \qquad or \qquad . Always make sure to check your solutions!

An extraneous solution \qquad is a solution derived from an original equation that is not a solution of the original equation.

You must isolate the absolute value expression before rewriting as two equations.

Examples:

Solve each equation. Check your answers.

1. $|-3 x|=18$
$\begin{aligned} & \frac{-3 x}{-3}=\frac{18}{-3} \text { or } \quad-(-3 x)=18 \\ & 3 x=18 \\ & \text { 3. } \begin{array}{l}x=-6 \\ 3|z+7|=12\end{array} x=6\end{aligned}$

Solve each equation. Check for extraneous solutions.

2. $|2 x-1|=5$

$$
\begin{array}{crl}
|2 x-1|=5 & & -(2 x-1)=5 \\
2 x-1=5 & \text { or } & -(2 x+1=6 \\
2 x=6 & & -2 x+1=6
\end{array}
$$

4. $|4-2 y|+5=9$
$4-2 y=4$ or $-(4-2 y)=4 \quad 4-2 y=4$ or
$\begin{array}{cccc}-2 y=0 & -4+2 y=4 & -2 y=0 \\ y=0 & \text { or } & \begin{array}{cl}+4 & +4\end{array} & y=0\end{array}$

$$
y=0 \quad \text { or } \quad 2 y=8
$$

6. $|7 y-3|+1=0$

$$
2 \dot{y}>8
$$

5. $|x+5|=3 x-7$

$$
\begin{array}{r}
7 y-3=-1 \text { or }-(7 y-3)=-1 \\
\text { empty set } \\
\text { no solution (abs.val.can't } \\
\text { be negative) }
\end{array}
$$

7. $|4 w+3|-2=5$

8. $\quad 2|z+1|-3=z-2$

$$
\frac{2|z+1|}{2}=\frac{z+1}{2}
$$

$$
2\left(z+1=\frac{1}{2} z+\frac{1}{2}\right)^{2} \text { or }-(z+1)=\frac{1}{2} z+\frac{1}{2}
$$

$$
2 z+2=z+1 \quad\left(-z-1=\frac{1}{2} z+\frac{1}{2}\right) 2
$$

$$
-z-2-z i^{2} \quad-2 z-2=z+1
$$

$$
9 \quad z=-1 \quad \text { or } \quad \begin{aligned}
-z+2-z & +2 \\
& -3 z=3
\end{aligned} \quad z=-1
$$

II. Solving Absolute Value Inequalities.

Describe the set of numbers that would make the following statement true: $|x| \leq 2$

$$
x \leq 2 \text { and } x \geq-2
$$

All real numbers between -2 and 2 including -2 and 2
Describe the set of numbers that would make the following statement true: $|x|>1$ $x>1$ or $x<-1$

Rewrite $|x|>a$: \qquad $x>a$ or $x<-a$ * more is or *

Rewrite $|x| \leq a$: \qquad $x \leq a$ and $x \geq-a$

You must isolate the \qquad value expression before rewriting as two inequalities.

Solve each inequality. Graph the solution.

1. $|2 t-3| \leq 5$

$$
-1 \leq x \leq 4
$$

3. $\left.\frac{5|y+3|}{5} \right\rvert\, \frac{15}{5}$

$$
\begin{array}{rr}
y+3<3 \\
-3 & \text { and }-(y+3)<3 \\
y<0 & -y-3<3 \\
y & +3+3
\end{array}
$$

$$
\frac{-y}{-1}<\frac{6}{-1}
$$

5. $\begin{array}{r}\frac{1}{2}|2 w-1|-3 \geq 1 \\ +3+3\end{array}$
$2 \cdot \frac{1}{2}|2 w-1| \geq 4 \cdot 2$
 $2 w-1 \geqslant 8$ or

$$
-(2 w-1) \geq 8
$$

$$
2 w \geq 9
$$

$$
w \geq \frac{9}{2}
$$

$$
\omega \geq 4.5 \text { or } \omega \leq-3.5 \leq-\frac{7}{2}
$$

2. $|4 b|-3>9$
$\frac{4 b}{4}>\frac{12}{4}$ or $\frac{-4 b}{-4}>\frac{12}{-4}$
$b>3$ or $b<-3$

3. $2|4 x+1|-5 \leq 1$

$$
\begin{aligned}
& \frac{2|4 x+1|}{2} \leq \frac{6}{2} \\
& 4 x+1 \text { and }-(4 x+1) \leq 3 \\
&-1-1
\end{aligned} \quad-4 x-1 \leq 3
$$

$$
4 x \leq 2 \quad-4 x \leq 4
$$

$$
x \leq \frac{1}{2} \quad \text { and } \quad x \geq-1
$$

6. $|-2 x+4| \geq 4$
$\begin{array}{lc}-2 x+4 \geq 4 & \text { or }-(-2 x+4) \geq 4 \\ -2 x \geq 0 & 2 x-4 \geq 4\end{array}$
$x \leq 0$
or
$x \geq 4$

