Section 3.1 - Solving Systems by Graphing To solve linear systems graphically.

Systems of Equations

A system of equations is 2 or more equation with the same variables. To solve a system of equations, find the pair that satisfies all the equations. There are four methods to solve a system: \qquad , Substitution ion Elimination , and Matrices .

Classification of Systems

We classify the Solutions of a system by two different characteristics.

1. Consistent or Inconsistent

- A system is \qquad consistent if it has \qquad at least one solution
- A system is Inconsistent if it has no solutions

2. Dependent or Independent

- A system is Independent if it has exactly one solution
- A system is Dependent if it has an infinite number of solutions. (infinitely many)

There are three possibilities for the number of solutions of a 2×2 system of linear equations:

- Write each equation in slope intercept form:

- If the slopes are the same and the y-intercepts are the same then it is consistent dependent (same line)
- If the slopes are the same and the y-intercepts are \qquad different then it is inconsistent.
- If the slopes are \qquad different then it is consistent, independent.
\therefore this system is Inconsistent

Solve the system of equations by graphing. Mentally check your answers. Then describe the type of lines.
$y=m x+b$
$x=2 y$
$\frac{x}{2}=\frac{2 y}{2}$
$y=\frac{1}{2} x$
$-y-y=6$
$y=2 x+6$

Solution \qquad Solution Infinitely Many
solution $\frac{\not \text { no solution }}{\text { (parallel) }}$
Classification Consistent Classification $\frac{\text { Consistent }}{\text { Independent }}$
Classification \qquad Dependent

Classification Inconsistent
\qquad

Section 3.2 - Solving Systems Algebraically To solve systems algebraically

- Solve the system of equations using the \qquad Substitution method.

2. $6 x-8 y=-24$

Infinitely
many solutions
consistent
Dependent

$$
\begin{aligned}
& y=\frac{3}{4} x+3 \\
& 6 x-8\left(\frac{3}{4} x+3\right)=-24 \\
& 6 x-6 x-24=-24 \\
& +24+24 \\
& 0=0 \text { True }
\end{aligned}
$$

Infinitely
many solutions
Dependent

> Solution: $(4,2)$
> consistent Independent

1. $\begin{gathered}x=2 y \\ 2 x-y=6 \\ 2(2 y)-y= \\ 4 y-y=6 \\ \frac{3 y}{3}=\frac{6}{3} \\ y=2 \\ x=2(2) \\ x=4\end{gathered}$
2.

$x-y-z=-4$
$5 x+2 y-3 z=$ 견

3. $y+5=2 x \rightarrow y$ $4 x-2 y=4$
$4 x-2(2 x-5)=4$
$4 x-4 x+10=4$
$10 \neq 4$ False
No solution
Inconsistent

$x-1=-4$
$x=-3$
$x-5+4=-4$

- Solve the system of equations using the Elimination method. Be sure to check your answers.

1. $3 x-2 y=2$
$\begin{array}{lr}2(2 x+y=13) \rightarrow & 2(4)+y=13 \\ 4 x+2 y=26 & 8+y=13 \\ 3 x-2 y=2 & -8 \\ \begin{array}{ll}7 x \\ 7 & \frac{28}{7} \\ x=4 & y=5\end{array} \\ & \begin{array}{l}(4,5) \\ \text { Consistent } \\ \text { Dependent }\end{array}\end{array}$
$-3(5 x+7 y=6)$
$\frac{5}{2}=4-3 x$
$5(3 x+5 y=4)$
$\frac{5}{2}-\frac{4}{1}=-3 x$
$-15 x-21 y=-18$
$15 x+25 y=20$
$\frac{5}{2}-\frac{8}{2}=-3 x$ $\frac{4 y}{4}=\frac{2}{4}$
$x-y--4=-4$
$5 x+2 y-3(-4)=7$
$5(y-8)+2 y=-5$
$5 y-40+2 y=-5$
$7 y=\frac{35}{7}$
$y=5$
2. $2 x+6 y=10-2 x$

$$
\begin{gathered}
6 x=10-9 y) \\
-3(4 x+6 y=10) \\
2(6 x+9 y=10)
\end{gathered}
$$

$-12 x-18 y=-30$
$12 x+18 y=20$

$0=-10$ | no solution |
| :---: |
| inconsistent |

Section 3.3 - System of Linear Inequalities objective: To solve a system of inequalities

System of Linear Inequalities:

To solve a system of inequalities, we need to find the ordered pairs that satisfy all of the equations in the system. The solution set is represented by the intersection of shaded regions \qquad of the graphs of the inequalities.

Graph the
 \qquad system of Inequalities.

1. $y<-\frac{2}{3} x+4$ $y \geq x+1$

2. $-4 \leq x<3$

For each inequality:

1. Graph the boundary line.
2. Determine whether the boundary line is solid or dashed.
3. lightly the half-plane.

Darken the overlap of the shading for all of the inequalities.
3. $2 x+y \leq-2 \quad y \leq-2 x-2$ $y>\frac{1}{2} x-1$
$x \geq-3$

4. Write the system of inequalities from the graph.

Linear Programming is the process of Finding Maximum and minimum values of a function for a region defined by inequalities. The inequalities are called constraints. The intersection of the graphs are called the Feasible Region. The \max and min of related functionalways occurs at a vertex (corner points) of the feasible range

Example 1:

A small company produces knitted a beanies and sweaters and sells them through a chain of specialty stores. The company is to supply the stores with a total of no more than 100 beanies and sweaters per day. The stores guarantee that they will sell at least 10 and no more than 60 beanies per day and at least 20 sweaters per day. The company makes a profit of $\$ 10$ on each beanie and a profit of $\$ 12$ on each sweater.
a) Write a system of inequalities to represent the information.

Let $x=\#$ of beanies

These inequalities are called constraints.
b) Graph the inequalities.

Use x and y intercepts when possible.
The solution (shaded region) is called the Feasible region

c) Write a function that represents the profit earned. $\mathrm{P}(x, y)=10 x+12 y$

This is our Objective Function. An objective function can represent many things. The goal of linear
programming is to maximize or minimize the objective function.

> Gprofit
d) The Corner-Point Principle states that the \qquad or \qquad values of the objective function will occur at one of the vertices of the feasible region. Identify and label the vertices in your graph. List them in the table below and calculate the profit at each one.

Vertex	Obj. Function: $P(x, y)=10 x+12 y$
$(10,20)$	$P(10,20)=10(10)+12(20)=\$ 340$
$(10,90)$	$P(10,90)=10(10)+12(90)=\$ 1180$
$(60,20)$	$P(60,20)=10(60)+12(20)=\$ 1080$
$(60,40)$	$P(60,40)=10(60)+12(40)=\$ 840$

Hint:

If you can't read the vertices from the graph, decide which two lines are intersecting and solve algebraically (use substitution or elimination.)

How many beanies and sweaters will give the maximum profit? 10 beanies +90 sweaters
What is the maximum profit? \qquad

Example 2:
A clothing factory produces casual shirts and dress shirts. No more than 1000 shirts can be made per hour and production costs may not exceed $\$ 8400$ per hour. It costs $\$ 3$ to make a casual shirt and $\$ 12$ for a dress shirt. The profit is $\$ 0.85$ per casual shirt and $\$ 3.00$ per dress shirt.

$$
\begin{gathered}
\text { Let } x=\text { \# casual shirts } \\
y=\# \text { dress shirts }
\end{gathered}
$$

	Casual shirts	Dress Shirts	Constraint
Amount	$x+y$	$\leqslant 1000$	
cost	$3 x+12 y$	$\leqslant 8400$	
Profit	$.85 x$	$3 y$	

a) Write the constraints.

$$
\begin{aligned}
& x+y \leq 1000 \rightarrow y \leq-x+1000 \\
& 3 x+12 y \leq 8400 \rightarrow y \leq-\frac{1}{4} x+700
\end{aligned}
$$

b) Graph the feasible region.
c) Write the objective function. $\mathrm{P}(x, y)=.85 x+3 y$

Vertex	Obj. Function: $P(x, y)=.85 x+3 y$
$(0,0)$	$P(0,0)=.85(0)+3(0)=\$ 0$
$(0,700)$	$P(0,700)=.85(0)+3(700)=\$ 2100$
$(400,600)$	$P(400,600)=.85(400)+3(600)=\$ 2140$
$(1000,0)$	$P(1000,0)=.85(1000)+3(0)=\$ 850$

d) How many dress and casual shirts need to be made to maximize the profit? What is the max profit? The factory should make \qquad casual shirts and \qquad dress shirts for a maximum profit of \qquad $\$ 2140$.

Equations of Three Variables

Equations with 3 variables usually have the following variables: \qquad z . The graphical representation of a system in three variables to the Power of 1 is a plane. Below is graphical representation of the \qquad solutions of a system in three variables.
One
Solution

The planes
intersect at
one common
point)

(The planes intersect at
all the points along
a common line)

Solving a System of Equation in Three Variables

Solving a system of equations in \qquad is very similar to solving a system in \qquad - variable Again there are 4 ways to solve a system of three variables: graph, subs, elimination, and matrices . We will focus on only two of these methods - substitution + elimination (elimination)
Example: Solve the following system by substitution.
A $3 x+y-2 z=22$
(B) $\begin{aligned}-3 z+5 y+z & =4 \\ -2 z+5 y & =4\end{aligned}$
$-5(-11 z+y=22)$
$-2 z+5 y=4$
$55 z-5 y=-110$
$53 z=-106$

$$
x=-3(-2)
$$

$\frac{53 z}{53}=\frac{-106}{53}$
$3(6)+y-2(-2)=22$
(A) $3(-3 z)+y-2 z=22$

$$
\begin{array}{r}
-9 z+y-2 z=22 \\
-11 z+y=22
\end{array}
$$

$$
z=-2
$$ $z=-2$

$$
\begin{aligned}
18+y+4 & =22 \\
22+y & =22
\end{aligned}
$$

$$
\begin{aligned}
& 22+y=22 \\
& -22
\end{aligned}
$$

Examples: Solve the following systems by the elimination

$$
y=0
$$

2. $\left\{\begin{array}{l}5 x+3 y+2 z=2 \\ 2 x+y-z=5 \\ x+4 y+2 z=16\end{array}\right.$

Rate Word Problems. Review: distance $=$ rate \times time
Write a system for each problem and solve using substitution or elimination method.

1. A boat travels 30 km upstream (against current) in 3 hours. The boat travels the same distance downstream in 2 hours. Find the rate of the boat in still water and the rate of the current.

$$
\begin{aligned}
\text { Let } r & =\text { rate of boat } \\
c & =\text { rate of current }
\end{aligned}
$$

rate downstream $=r+C$ rate upstream $=r-C$
2. With the wind, a plane flew 1000 miles in 2 hours. Against the wind, the plane flew 800 miles in the same amount of time. Find the rate of the plane in still air and the rate of the wind.

$$
\text { Let } r=\text { rate of the plane }
$$

$$
w=\text { rate of the wind }
$$

rate with the wind $=r+w$
rate against the wind $=r-\omega$

	Rate	Time	Distance
downstream	$b+c$	2	30
upstream	$b-c$	3	30

$$
\begin{aligned}
& \frac{30}{2}=\frac{2(b+c)}{2} \\
& 15=b+c \\
& 10=b-c \\
& \frac{25}{2}=\frac{2 b}{2} \\
& 12.5=b
\end{aligned}
$$

$$
\frac{30}{3}=\frac{3(b-c)}{3}
$$

$$
10=b-c
$$

$$
10=12.5-c
$$

$$
-12.5-12.5
$$

$$
-2.5=-c
$$

$$
2.5=c
$$

Mixture problems
Total volume/ Active volume

1. A nurse wished to obtain 800 ml of a 7% solution of boric acid by mixing 4% and 12% solutions. How much of each should be used?

$$
\begin{aligned}
\text { Let } x & =\text { amount of } 4 \% \\
y & =\text { amount of } 12 \% \\
x+y & =800 \rightarrow y=800-x \\
4 x+12 y & =5600
\end{aligned}
$$

$$
\begin{gathered}
4 x+12(800-x)=5600 \\
4 x+9600-12 x=5600 \\
-8 x=-4000 \\
x=500 \mathrm{~mL}
\end{gathered}
$$

	Amount	$\%$	Total
	127	Solution 1	x
Solution 2	y	4	$4 x$
	Mixture	800	7

4% solution $=500 \mathrm{~mL}$

$$
y=800-500 \rightarrow y=300 \mathrm{~mL}
$$

12% solution $=300 \mathrm{~mL}$
2. How much pure antifreeze must be added to 12 liters of a 40% solution of antifreeze to obtain a 60% solution? Hint: Let $x=\#$ of liters of pure (100%) antifreeze

$$
\begin{array}{rlrl}
y=\# \text { of liters of } 60 \% \text { solution } & \\
x+12=y & 100 x+480 & =60(x+12) \\
100 x+480=60 y & 100 x+480 & =60 x+720 \\
40 x & =240 \\
x & =6
\end{array}
$$

3. Penny wants to buy 40 pounds of a mixture of nuts by willing combining peanuts selling at $\$ 2.40$ per pound with cashews selling at $\$ 3.20$ per pound. If the mixture costs $\$ 2.70$ per pound, how many pounds of each type of nut should she buy?

$$
\begin{array}{rlr}
-2.40(p+c=40) & p+15=40 \\
2.40 p+3.20 c & =108 & p=251 \mathrm{bs} \\
-2.40 p-2.40 c & =-96 & \\
\hline .80 c & =12 & \\
c=1516 \mathrm{~s} &
\end{array}
$$

$100 \% \%$		Solution 1	x	100
40%	Solution 2	12	40	480
	Som	Mixture	y	60
				$60 y$
	100\% solution $=6 \mathrm{~L}$			

$6+12=y$
$18=y$
60% solution $=181$ complete sentence.
4. The difference between two numbers is 16 . Five times the smaller is the same as 8 less than twice the larger. Find the numbers.
5. Nick has $\$ 8$ in nickels and dimes. All together he has 100 coins. How many of each type of coin does he have?

```
Let \(x=\) small number
        \(y=\) larger number
    \(y-x=16 \rightarrow y=x+16\)
\(5 x=2 y-8\)
\(5 x=2(x+16)-8 \quad y=8+16\)
\(5 x=2 x+32-8\)
\(5 x=2 x+24\)
\(\frac{3 x}{3}=\frac{24}{3}\)
\(x=8\)
```

Let $x=$ number of nickels
$y=$ number of dimes
$x+y=100 \rightarrow x=100-y$
$5 x+10 y=800$

$5(100-y)+10 y=800$	$x=100-60$
$500-5 y+10 y=800$	$x=40$
$5 y=300$	60 dimes
$y=60$	40 nickels

6. Tom and Jerry have saved $\$ 4500$ and want to invest it into 2 accounts. One account earns 5% annual interest and the other 9% annual interest. If they want to earn $\$ 250$ in interest per year, how much should they invest into each account?
```
Let \(x=\) amount of \(\$\) in the \(5 \%\) account
    \(y=\) amount of \(\$\) in the \(9 \%\) account
    \$625 into the account
    with \(9 \%\) interest.
    \(\$ 3875\) into the account
    with 5\% interest.
```


$.05 x+.09 y=250$

$$
.05(4500-y)+.09 y=250
$$

$$
225-.05 y+.09 y=250
$$

$$
.04 y=25
$$

$$
y=8625
$$

$$
\begin{aligned}
& x=4500-625 \\
& x=\$ 3875
\end{aligned}
$$

