1. Factor completely :
(a) $x^{2}-7 x-60$
(b) $4 x^{2}+20 x-24$
(c) $16 x^{2}-56 x+49$
(d) $16 n^{4}-64$
2. Write a quadratic equation whose roots are - 5and 7
3. The roots of $x^{2}+3 x-8=0$ are \qquad
4. For the function $f(x)=x^{2}-5 x+6$, the zeros are?
5. Write the solution of $x^{2}+x+5=0$.
6. What is the value of $\sqrt{-16} \cdot \sqrt{-25}$?
7. Simplify: $(4+3 i)+2(3-5 i)$
8. Find the product of $(2+4 i)(4-3 i)$
9. Find $\left(5 i^{10}\right)\left(-2 i^{6}\right)\left(-4 i^{26}\right)$
10. Simplify : $\frac{5-3 i}{8+2 i}$
11. $\left(\frac{4}{5}\right)^{-3}=$
12. What would you add to $x^{2}-5 x+$ \qquad to complete the square?
13. What is the equation of the line which passes through the points $(2,5)$ and $(-3,7)$?
14. Write an equation of the line that is parallel to $y=\frac{2}{3} x-4$ going through the point $(-3,5)$. Write your answer in slope-intercept form.
15. Write an equation of the line that is perpendicular to $y=\frac{2}{3} x-4$ going through the point $(-3,5)$. Write your answer in point-slope form.
16. A boat travels 80 miles downstream in 4 hours. It makes the return trip, against the current, in twice the time. What is the speed of the current?
17. State whether each vertex is a maximum or a minimum
18. Solve: $\frac{1}{3}\left|6 x-\frac{1}{2}\right|=9$
A) $y=5 x^{2}-2$
B) $y=-2(x+4)^{2}+9$
19. Convert $60 \mathrm{~km} / \mathrm{h}$ to meters $/ \mathrm{s}$
C) $y=\frac{1}{3}(x-5)^{2}-4$
20. You wish to purchase a 14 pound bag of mixed nuts. Peanuts are $\$ 5.00$ per pound and almonds are $\$ 6.00$ per pound. How many pounds of peanuts should you buy if the entire bag costs $\$ 74$?
21. What is the vertex of $y=2(x+3)^{2}-10$?
22. What is the transformation of $y=2(x-9)^{2}-3$ from the parent graph $y=x^{2}$?
23. Which could be the graph of $y=x^{2}-5$?
A)
B)
C)
D)

24. Simplify: $\left(3 x^{3}-4 x+5\right)-2\left(4 x^{3}+3 x^{2}-5 x+1\right)$
25. $\left(3 x^{4}-5 x^{3}+7 x+4\right) \div(x-2)$
26. Graph $|3 x+2|-4>2$ on the number line.
27. Graph: $\left\{\begin{array}{l}y \geq 1 \\ x<6 \\ y \leq 2 x+1\end{array}\right.$
28. Solve the system: $\left\{\begin{array}{l}x+2 y+z=10 \\ 2 x-y+3 z=-5 \\ 2 x-3 y-5 z=27\end{array}\right.$

Find the corner-points of the feasible region. Use these corner-points to find the maximum and minimum values using $f(x, y)=2 x-3 y$

29. Convert the following
a. 52 miles per hour to feet per second
b. 123,000,000 centimeters to kilometers

