N:	me Kew	Algebra II
D.	tePer	WS 8.1 Word Probs. Variations
Sh	ow the work to solve each of the following word problems. Be:	
1.	The number of kilograms of water in a person's body varies of kg contains 60 kg of water. How many kilograms of water ar	re in a person with a mass of 50 kg?
	kg = mK $60 = K(90)$ k $K = 2/3$	
2.	The amount of fertilizer needed for a lawn varies directly with needed for 500 square feet of lawn, how much is needed for I	h the area of the lawn. If 4 pounds of fertilizer are Dr. Quagmire's lawn, which is rectangular in shape and
	measures 25 feet by 50 feet? $4 = K(500)$	$F = \frac{1}{125}(1250)$
A.	= 25.50 = 1250 ft 2 K-500 = 3	
3.	The time, t, it takes to travel a certain distance varies inversely	y as the speed, s. Write an equation if $t = 10$ hours when
	s = 80 km/hr.	1 800
	$t = \frac{k}{5}$ $10 = \frac{k}{800}$	t= 5
4.	The volume of gas varies inversely as the pressure. A helium	n-filled balloon has a volume of 21 m ³ at sea level, where
	the pressure is 1 atmosphere. The balloon rises to an altitude	where the pressure is 0.7 atmospheres. What is the
	volume? $V = \frac{k}{D}$ $21 = \frac{k}{1}$	$\sqrt{\frac{1}{2}}$
	K=21	1/- 20 103
5.	For piano wires under the same tension, the # of vibrations pe	er second (frequency) of each wire is inversely
	proportional to the length of the wire. A wire 0.75 m long vil vibrates 300 times per second?	
	- 480 = - 7	$=$ 300 = $\frac{360}{1}$
	F = T $K = 36$	
6	The distance, d, that a free-falling body falls varies directly as	0000 000
٥.	t = 3 sec, find the value of the variation constant, k. Then fin	d d when t = 5 sec.
/	1= 1+2 36=K(3)2	(I=4(5))
(36=K(9) K=L	
7.		
	D - 1.(-)2 6-K(1)	$P = \frac{1}{100}(15)^2$
	T-K(1) 6=K(1)	$P = \frac{3}{50}(227) = \frac{13}{50}$ y as the square of its distance, d, from the source of the
8.	The brightness of illumination, I, of an object varies inversely	v as the square of its distance of from the square of the
	illumination. If $l = 18$ luxes when $d = 4$ m, find the value of l	k. Then find I when $d = 3$ m.
		- 288 288

For $10-17$, translate each statement into a formula, using k as the constant of variation.			
10. V varies jointly as B and h. $V = Bh$			
10. V varies jointly as B and h. $V = Bh$ 11. I varies directly as W and inversely as n. $+ = Wk$ W $V = Bh$			
12. h varies directly as W and inversely as the square of r. $h = \frac{W1C}{L^2}$			
13 Averies jointly as A and Hand inversely as T			
14. The volume, V , of a gas varies directly as the temperature, T , and inversely as the pressure, P . $V = \frac{T}{P}$ 15. The collision impact. L of an automobile varies jointly as the mass, m , and the square of the speed, $s = \frac{T}{P}$			
15. The collision impact, I , of an automobile varies jointly as the mass, m , and the square of the speed, s . \Box			
16. The safe load, s, for a beam, varies jointly as the breadth, b, and the square of the depth, d, and inversely as the length, l, between supports.			
17. The gravitational force, g , between two objects varies jointly as the mass of the first, m_1 , and $g = \frac{km_1m_2}{d^2}$ the mass of the second, m_2 , and inversely as the square of the distance, d , between them.			
the mass of the second, m_2 , and inversely as the square of the distance, d, between them.			
 18. The heat loss through a glass window varies jointly as the area of the window and the difference between the inside and outside temperatures. If the loss through a window with area 3 m² is 720 BTU when the temperature difference is 15 C, what is the heat loss through a window with area 4.5 m² when the temperature difference is 12 C? LOSS = KA · (In Side-Outside)			
while both the constant and the equation in terms of π .			
V=Khr ² 54 K(8)(4.5) ² V= 3hr ² K= 547 + 3 V= 3hr ²			
21. The <u>stretch</u> in a wire under a given tension varies directly as the <u>length</u> of the wire and inversely as <u>the square of its</u> diameter. A wire having length 2 m and diameter 1.5 mm stretches 1.2 mm. If a second wire of the same material (and under the same tension) has length 3 m and diameter 2.0 mm, find the amount of stretch.			
$S = \frac{1.2 = \frac{1.2}{2.25}}{1.5^{2}} = \frac{1.2 = \frac{27}{2.25}}{1.5^{2}}$ Mixed answers for #18-21: 0.125; 1.0125; $\frac{\pi}{3}$; $v = \frac{\pi}{3}hr^{2}$; 864 $S = \frac{1.35}{2.25}$ $K = 1.35$			
Mixed answers for #18-21: 0.125; 1.0125; T_{c} ; $V = T_{c}hr^{2}$; 864			
$///3$ /3 / $S = \frac{1.35(3)}{(2)^2} - (1.0125)$			

Scanned by CamScanner