Rewrite the equations into logarithmic form.

1.
$$2^5 = 32$$

$$2. \left(\frac{1}{3}\right)^{-3} = 27$$

Rewrite the equations into exponential form.

3.
$$\log_5 25 = 2$$

4.
$$\ln e = 1$$

Evaluate the following logarithms.

6.
$$\log_4 4^6$$

7.
$$\log \frac{1}{100}$$

8.
$$\ln e^{5}$$

Expand the following logarithm.

11.
$$\ln \frac{5x^2}{2}$$

Condense the following logarithm.

12.
$$2\log x + \log y - \log z$$

For #13-19, solve the equations for x. Check for extraneous solution. Round to 3 decimal places if needed.

$$2^{x+3} = \frac{1}{16}$$

$$2^{x+3} = 2^{-4}$$

X+3=-4

$$14. \left(\frac{1}{3}\right)^x = 3^{x-6}$$

3.
$$5^2 = 25$$

$$_{14.}$$
 X = 3

15.
$$\log_x 56 = -2$$

$$(X^{-2})^{-1/2}$$
 $(36)^{-1/2}$

$$17.3^{x+2} = 14.5$$

 $17.3^{x+2} = 10.14.5$

$$\ln 3^{x+2} = 14.5$$

 $\ln 3^{x+2} = \ln 14.5$
 $(x+2)\ln 3 = \ln 14.5$
 $x+2 = \ln 3$
 $19.\ln(3x) + \ln(2x) = 9$
 $\ln (6x^2) = 9$

19.
$$\ln(3x) + \ln(2x) = 9$$

 $\ln(6x^2) = 9$

$$e^{9} = (ex^{2})$$

$$\chi^2 = \frac{e^9}{6}$$

$$\chi^2 = \frac{e^7}{6}$$

3x=1n3

$$lne^{3x} = 3$$

18.
$$\log_8(x^2 + x) = \log_8 12$$

$$\chi^2 + \chi = 12$$

$$\chi^2 + \chi - 1Z = 0$$

20. Find the exponential function of the form, $y = a \cdot b^x$, whose graph passes through the points (0,2) and grows 30% per year.

21. You deposit \$1000 in an account that pays 7.3% annual interest compounded monthly. How much money would you have after 15 years?

$$A = 1000(1 + \frac{.073}{12})^{12.15}$$

- 22. The value of a new car purchases for \$28,000 decreases by 12% per year.
 - ·a. Write an exponential model for the value of the car.
 - b. Use the model to estimate the value after 5 years.
- 23. You deposit \$5000 in an account that pays 3% annual interest compounded continuously. How long (to the nearest year) would it take to double your money?

Useful formulas

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = Pe^{rt}$$

$$y = a(1+r)^t$$

$$.03t = 1n 2$$

$$_{15.}$$
 $\chi = \frac{1}{6}$

$$_{20.} \underline{y} = 2(1.3)^{\times}$$

$$A = 28,000 (1-12)$$

 $A = 28,000 (-88)$

$$y = \alpha (1 - r)^t$$